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We present the Flowfield Dependent Variation (FDV) method for physical applications that
have widely varying spatial and temporal scales. Our motivation is to develop a versatile
numerical method that is accurate and stable in simulations with complex geometries
and with wide variations in space and time scales. The use of a finite element formulation
adds capabilities such as flexible grid geometries and exact enforcement of Neumann
boundary conditions. While finite element schemes are used extensively by researchers
solving computational fluid dynamics in many engineering fields, their use in space phys-
ics, astrophysical fluids and laboratory magnetohydrodynamic simulations with shocks has
been predominantly overlooked. The FDV method is unique in that numerical diffusion is
derived from physical parameters rather than traditional artificial viscosity methods.
Numerical instabilities account for most of the difficulties when capturing shocks in these
regimes. The first part of this paper concentrates on the presentation of our numerical
method formulation for Newtonian and relativistic hydrodynamics. In the second part
we present several standard simulation examples that test the method’s limitations and
verify the FDV method. We show that our finite element formulation is stable and accurate
for a range of both Mach numbers and Lorentz factors in one-dimensional test problems.
We also present the converging/diverging nozzle which contains both incompressible
and compressible flow in the flowfield over a range of subsonic and supersonic regions.
We demonstrate the stability of our method and the accuracy by comparison with the
results of other methods including the finite difference Total Variation Diminishing
method. We explore the use of FDV for both non-relativistic and relativistic fluids (hydro-
dynamics) with strong shocks in order to establish the effectiveness in future applications
of this method in astrophysical and laboratory plasma environments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Many research fields have become strongly dependent on computational simulations to study unobservable physical pro-
cesses. In these cases, computational approaches are more practical and economical. The theoretical modeling of the com-
plex physical processes are guided and verified by numerical simulations. Finite difference schemes and finite volume (based
on finite difference) schemes are the most common numerical schemes in the astrophysical and plasma physics literature. A
very thorough review of methods used in relativistic flows can be found in [14,23]. The literature shows a wide variety of
numerical schemes with one obvious exception, the use of finite element schemes [24,29]. This is likely due to the compu-
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tational restrictions on finite element schemes that have only recently been overcome. There are a number of finite differ-
ence based schemes which have been utilized for laboratory scale magnetohydrodynamic (MHD) modeling. For example,
MACH2, an axisymmetric 2D non-ideal MHD code, uses a finite volume via finite difference scheme with a second order
van Leer method to compute the fluxes for convection [22,26]. Sankaran et al. [32] developed a flux-limited approach with
characteristics-splitting techniques to satisfy the Rankine–Hugoniot relations. Several codes are based on the MUSCL-type
limited reconstruction principle [3,15,27,38,39]. Comparatively, there has been little work involving finite element schemes
in which both the physical and logical mesh are permitted to be unstructured. NIMROD is among the most widely used codes
within the fusion community to study magnetically confined plasmas, and has a finite element discretization [16,36,37].
However, it does not have a shock solver.

The Flowfield Dependent Variation (FDV) method was first introduced for engineering applications where incompressible
and compressible flow regions exist in the same flowfield [8,9,33,43]. The method was further developed for non-ideal rel-
ativistic hydrodynamic flows using a finite element approach [28,29]. The concept was to have a single method accurately
solve the entire flowfield even when multiple regions contained flows as different as compressible versus incompressible or
laminar versus turbulent. The FDV method uses physical flow parameters (such as the Mach number, Reynolds number, Lor-
entz number, etc.) to identify the type of flow and the best solution method for that type of flow. The method reduces to
previously established numerical schemes if specific indicators are set to constant values. In other words, the FDV method
was developed as a way to incorporate multiple solution methods into a single computational domain, while automatically
recognizing which method is needed in each area of the flowfield. Most other methods are developed for specific applications
and are highly accurate for their purpose, but are not able to solve a range of applications. The FDV method is designed to
accurately solve a wider variety and wider scale of problems.

Current numerical schemes used in astrophysics and laboratory plasma, based on finite difference and finite volume
schemes, have proven to be reliable [4,5,10,13,18]. However, finite difference methods still have some inherent limitations
due to the finite difference formulation. Difficulties still exist in the modeling of phenomena with inherent spatial and tem-
poral scale differences such as discontinuities. For example, in the flow region where a shock wave is traveling, the physical
properties of the flow are rapidly changing. In the region the shock has already interacted, the changes are on a much smaller
time scale. A highly diffusive solution will result if a large amount of damping is forced in both regions. With FDV, the meth-
od will identify the shock so that only limited sections of the flow will be damped. With a finite element scheme, complex
geometries (non-structured grids), exact enforcement of Neumann boundary conditions, and four-dimensional adaptive
mesh (time and space) can also be applied. The importance of examining finite element schemes for astrophysical problems
is becoming evident with the desire to model problems with diverse spacial and temporal scale variations such as relativistic
jet formation and propagation and gamma-ray burst studies. Finite element techniques have become the standard in fields
such as aerospace engineering, and these techniques have been proven stable and reliable in a wide range of environments
[9,44]. In general, finite element schemes are mathematically more rigorous than other schemes, and in the past this has
meant they were computationally more expensive and not practical for shock capturing in laboratory MHD and astrophys-
ical applications which are already computationally complex in nature. Mathematical research has lead to new methods for
handling the large matrix inversions necessary, making finite element schemes a realistic option for most fluid simulations
[31].

In this paper we explore the stability and accuracy of the FDV method in finite element form for use in both non-relativ-
istic and relativistic phenomena where strong shocks are present. In Section 2 we discuss the conservation form of the gov-
erning equations. The formulation of these equations can affect the accuracy and efficiency of the numerical method. Section
3 contains a description of the FDV method and the use of finite element formulation for our numerical scheme. We also
discuss the use of GMRES for the matrix inversion and the time step constraints. The verification of the finite element
FDV method is presented in Section 4. The computational community has adopted a set of ‘‘standard” test problems for
hydrodynamic shocks. Included in this study are three non-relativistic and two relativistic shock test problems. Additionally,
a smooth sine wave and advection test (both with periodic boundaries) and a converging/diverging (de Laval) nozzle to dem-
onstrate the FDV method for flowfields with regions of both incompressible and compressible flow have been included. The
first non-relativistic shock case is a simple traveling square wave. The second is the shock heating problem of Noh [25]. The
third is Sod’s shock tube [35] solved for a variety of Mach numbers. The first of the special relativistic test problems used in
this paper is the standard mildly relativistic shock tube problem introduced by Centrilla and Wilson [7] and Hawley et al.
[17]. The second problem set that will be addressed is the relativistic shock heating problem [6]. The shock heating problem
is popular because it simulates strongly relativistic shocks with very high Lorentz factors. The technique described in this
paper is the first finite element scheme to be applied to these relativistic flow problems. Finally, the de Laval converging/
diverging nozzle is solved with regions of both incompressible and compressible flow. A summary of our results and the
advantages of FDV are given in Section 5. The purpose of this paper is to verify our numerical technique over widely varying
flowfields, specifically those found in both laboratory and stellar magnetic reconnection problems.
2. Governing hydrodynamic equations in conservation form

The governing hydrodynamic equations can be derived in several different forms. In order to ensure the constraints of the
conservation laws, the hydrodynamic equations are solved in this study in terms of their conservation variables rather than
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their primitive variables (pressure, velocity, density, etc.). Conservation variables are found from writing the governing phys-
ical equations in conservation form (mass, energy and momentum) as will be demonstrated below. After the computations
are complete, the conservation variables can be reduced back to the primitive variables. To allow relativistic problems to be
considered, a four-dimensional spacetime (Time + 3D Space) approach is made. This approach leads to the use of a four-
velocity which is related to the three-velocity by Ua ¼ ðW;u1;u2;u3Þ where W is the Lorentz factor (the relativistic represen-
tation of velocity) defined by W ¼ ð1� uiuiÞ�1=2 and ui is the three-velocity defined by ui ¼ @xi

@t . Eq. (1) shows the format for a
system of ideal three-dimensional relativistic hydrodynamic equations in conservation form and general coordinates. The
equations are solve with natural units (the speed of light c and the gravitational constant G are equal to 1). The index i labels
the physical dimension, U contains the conservation variables, Fi the convection (advection) terms, and S the source terms.
Here we include the source terms to facilitate the geometry of the converging/diverging nozzle problem and non-ideal and
general relativistic problems. The source term is not present in all cases.
@U
@t
þ @Fi

@xi
¼ S: ð1Þ
Standard tensor notation is used in these equations. Four-dimensional spacetime parameters are written with Greek indices
(eg. Tlt), while three-dimensional space parameters have Latin indices (eg. @Fi

@xi
). The three-dimensional conservation equa-

tions are derived from the conservation of mass density Ja and the conservation of the stress energy tensor Tab,
rlJl ¼ 0; ð2Þ
rlTlt ¼ Tlt

;l ¼ Tlt
;l þ TatCl

al þ TlaCt
al ¼ 0: ð3Þ
Note that ”;” is the tensor notation for the expansion in Eq. (3) and ”,” is the tensor notation for the partial derivative U;i ¼ @U
@xi.

As will be shown below, the last two terms on the right of Eq. (3) only appear for curvilinear metrics. The ideal form of the
stress energy tensor which excludes viscosity and heat flux is,
Tlt ¼ qhulut þ Pglt: ð4Þ
The tensor reveals both energy and momentum conservation. For example, T00 is the 0 component of the four momentum
across the surface of constant time. The 0 component of the four momentum is energy, so T00 is equal to the energy density.
The flux of energy across a constant spatial surface is T0j. Ti0 is the flux of momentum across the surface of constant time, the
i momentum density. Tij is the flux of momentum across a constant spatial surface. The metric terms, gab, define the envi-
ronment and are an important component for problems solved in curvilinear space. The metric defines the physical time and
space correlation and any curvature. For example, the spacetime around a black hole is curved in comparison with the flat
spacetime found in Newtonian physics. The Kerr metric is commonly used for simulations around a black hole and the line
element for a non-spinning black hole of mass M is given by ds2 ¼ � r�2M

r

� �
dt2 þ r2sin2hd/2 þ r

r�2M

� �
dr2 þ r2 dh2. In this exam-

ple, the source terms are calculated by the Christoffel symbols,
Ca
bc ¼ galClbc ¼

1
2

galðglb;c þ glc;b � gbc;lÞ: ð5Þ
In special relativity, the Minkowski line element, ds2 ¼ �dt2 þ dx2 þ dy2 þ dz2, is used to determine the metric. No source
terms result from the metric in special relativity, but there may be source terms due to physical components such as mag-
netic fields. An enjoyable and understandable discussion of relativity, metrics and tensor notation can be found in Schutz
[34].

Eq. (6) contains the conservation variables. In this equation, the first row corresponds to the conservation of mass, the
next three for the three-dimensional conservation of momentum and the final row for the conservation of energy. The prim-
itive variables in this example include q;ui, P, and h corresponding to the density, three-velocity, pressure and mass equiv-
alent (specific) enthalpy, respectively. Additionally, g is defined as the determinate of the metric.
U ¼
ffiffiffiffiffiffiffi
�g
p

qW

ðqhWu1 þ Pg01Þ
ðqhWu2 þ Pg02Þ
ðqhWu3 þ Pg03Þ
ðqhWW þ Pg00Þ

2
66666664

3
77777775
: ð6Þ
The convection (advection) terms, Fi are,
Fi ¼
ffiffiffiffiffiffiffi
�g
p

qui

ðqhuiu1 þ Pg11di
1Þ

ðqhuiu2 þ Pg22di
2Þ

ðqhuiu3 þ Pg33di
3Þ

ðqhWui þ Pgi0Þ

2
66666664

3
77777775
; ð7Þ
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and the source terms, S are,
S ¼
ffiffiffiffiffiffiffi
�g
p

0
TlaC1

al

TlaC2
al

TlaC3
al

TlaC0
al

2
66666664

3
77777775
: ð8Þ
Eqs. (6)–(8) are used in the special relativistic test problems presented in Section 4. In these equations, pressure is related to
the other variables by the equation of state, P ¼ Pðq; eÞ and is regulated by the Kronecker delta, dij. For an ideal gas, the equa-
tion of state is given by, P ¼ qeðc� 1Þ, where c is the ideal gas adiabatic exponent and e is the specific internal energy. The
specific enthalpy is defined h ¼ 1þ eþ P

q which includes the relativistic rest mass energy term ðE ¼ mc2Þ. Once the conserva-
tion equations have been solved, the primitive variables are recovered from the conservation variables shown in Eq. (6). The
detailed derivation of the above equations in a general relativistic environment can be found in Richardson and Chung [29].

In order to resolve the primitive variables ðu1;u2;u3; p;qÞ from the conservation variables ðU1;U2;U3;U4;U5Þ several
methods were compared. The most common methods for solving the fourth order equation that results in the one-dimen-
sional hydrodynamic case are iterative methods such as a Newton–Rhapson method. A disadvantage to using an iterative
method is found in the case of a high Lorentz shock. Iteration methods require a starting point value for the Lorentz factor
and since that value can range from one to over a thousand, estimating an initial guess can be difficult. Other methods have
been developed that exactly solve the fourth order equation by the method of radicals [28]. In this case, four solutions result
and the simulation code must be able to determine which is the correct solution. For our simulations there is always only one
positive solution. For more complex equation systems like those in MHD, a higher order equation results which can not be
solved using radicals and numerical approximations must be utilized. Our choice of solutions is to compute the eigenvalues
from the matrix formed using the polynomial coefficients. Since the number of solutions will always equal the order of the
polynomial, the correct physical solution must still be determined. Another iterative approach which is less complex can be
found in Del Zanna et al. [12]. In this method, an estimate of the velocity is necessary, but the high Lorentz value problem is
avoided since the velocity value will always be between 0 and 1.

Since both relativistic and non-relativistic test problems are used to validate FDV, the non-relativistic form is included for
completeness. The non-relativistic form can be found using the three-velocity instead of the four-velocity. The removal of the
Lorentz factor simplifies the equations greatly since the primitive to conservation conversion no longer has a higher-order
equation to be solved. Additionally, the energy term is simplified since the rest mass energy term is no longer a factor and the
gravitational source terms are removed. The non-relativistic ideal conservation equations are;
U ¼

q
qv1

qv2

qv3

E

2
6666664

3
7777775
; Fi ¼

qv i

qv iv1 þ Pdi
1

qv iv2 þ Pdi
2

qv iv3 þ Pdi
3

v iEþ v iP

2
6666664

3
7777775
: ð9Þ
The quasi one-dimensional equations used in the converging/diverging nozzle are also included.
U ¼
qA

qv1A

EA

2
64

3
75; F1 ¼

qv iA
ðqv1v1 þ PÞA
ðv1Eþ v1PÞA

2
64

3
75; S ¼

0
P @A
@x1

0

2
64

3
75: ð10Þ
Energy is give by the relationship P ¼ ðc� 1Þ E� 1
2 qv2

� �
where P is the pressure, v i the three-velocity, E the total energy, A the

cross sectional area perpendicular to the flow and c the specific heat ratio.
3. Flowfield Dependent Variation method

3.1. FDV formulation

The equations to be solved numerically in most space and laboratory plasmas and in astrophysical simulations, including
the relativistic hydrodynamic equations in Section 2, are non-linear partial differential equations (PDEs). Common forms of
PDEs include hyperbolic, elliptical and parabolic. The equations found in many of these scenarios are of a mixed form refer-
ring to a combination of one or more of the common types. The physical diffusion terms are indicated by the elliptical nature
of the PDEs. When these diffusion terms and/or widely disparate source terms (gravity, magnetic fields, etc.) are added to the
governing equations, the complexity of the equations noticeably increases. In many cases, the complexity of the physics out-
weighs the attention given to the numerical treatments. In some cases the dominating nature of the flow will vary across the
simulation domain. In these cases it is desirable that the simulation method recognize the different regions and automati-
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cally dictate the appropriate numerical scheme. Otherwise, a predetermined numerical scheme will influence the solution. In
many existing schemes, the numerical viscosities are calculated from the local flowfield velocities, suggesting that they are
indeed flowfield dependent. These may be adequate if the flow is dominated by convection only. If the flow is dominated not
only by convection but by other physical aspects such as gravity, electromagnetic forces, turbulence, or radiation, then spe-
cial treatments may be necessary. For these reasons, the FDV method has been examined.

In the FDV formulation the conservation equations are first expanded using a special form of the Taylor series where n
denotes the time index. This expansion is done with the addition of the first and second order flowfield-dependent variation
parameters, sa and sb.
Unþ1 ¼ Un þ Dt
@Unþsa

@t
þ Dt2

2
@2Unþsb

@t2 þ OðDt3Þ; ð11Þ

@Unþsa

@t
¼ @Un

@t
þ sa

@DUnþ1

@t
0 < sa 6 1; ð12Þ

@2Unþsb

@t2 ¼ @
2Un

@t2 þ sb
@2DUnþ1

@t2 0 < sb 6 1: ð13Þ
With,
DUnþ1 ¼ Unþ1 � Un; ð14Þ
and
DUnþ1 ¼ Dt
@Un

@t
þ sa

@DUnþ1

@t

 !
þ Dt2

2
@2Un

@t2 þ sb
@2DUnþ1

@t2

 !
þ oðDt3Þ: ð15Þ
3.2. FDV parameters

The FDV method is unique in that the FDV parameters act as weight functions between an implicit and explicit method.
This can be seen from Eq. (15). If the FDV parameters sa and sb are set to zero the method is explicit. If sa and sb are set to one
the method is implicit. Since the parameters are calculated between zero and one, the method is weighted more towards one
or the other. The FDV parameters are calculated from physical changes in the flow, which are reflected in such dimensionless
parameters as the Mach number or Lorentz factor. The appropriate dimensionless parameter is determined by the equations
being solved. For example in viscous flows, the non-dimensional form of the hydrodynamic equations includes the Reynolds
number and Prandtl number. In the ideal form, the equations have either the Mach number or Lorentz factor for the dimen-
sionless velocity. More complex MHD flows will have the velocity normalized with the Alfvén wave speed and magnetic Rey-
nolds number. The FDV parameters are calculated between every adjacent spatial node and at each numerical time interval
providing physical information about changes in the flow. If shocks are detected, the method adapts to an explicit form,
while a smooth flow is better solved with an implicit form. This physical information dictates the amount of numerical dif-
fusion necessary. For example, if the Mach number remains constant in space and time, the appropriate FDV parameter also
remains fixed. If the difference in Mach number between adjacent nodal points is non-zero, the parameter adjusts. The
amount of adjustment depends on the magnitude of the Mach number change between two spatial nodes. The resulting gov-
erning equations are capable of resolving widely disparate length and time scales.

In order to widen the physical interpretation of the FDV parameters, sa is separated into a convection parameter s1 and
source term parameter s5. The source term parameters are relevant for our nozzle simulation and for metrics with non-can-
celing Christoffel symbols like the Kerr metric. Similar arguments apply to the second order FDV parameter sb leading to s2

for convection and s6 for the source term. The parameters s3 and s4 are reserved for non-ideal simulations with diffusion
terms (ie. [29]). The second order FDV parameters are chosen to be exponentially proportional to the first order FDV param-
eters. This choice is made to ensure a connection between the first order FDV parameters which tend to assure accuracy of
the solution, and the second order FDV parameters which provide numerical stability (diffusion).

In the following modified FDV equations defining the first order term, ‘‘I” is the indicator being used. For our non-relativ-
istic simulations the Mach number is calculated. In the relativistic cases, the Lorentz number is used. It is important to note
that the minimum physical Lorentz number is one while the Mach number can be zero. The maximum and minimum indi-
cator values are determined from the set of nodes that make up each element and denoted by Imax and Imin. The FDV param-
eters are calculated for each element at each timestep.
sa ¼
minðr;1Þ r > a

a r < a; Imin – Iglobal

1 Imin ¼ Iglobal

8><
>: ð16Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
max � I2

min

q
Imin

ð17Þ
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The sa parameter will always fall between a and 1, ða < sa 6 1Þwhere 0 < a < 1. In the above equation, Iglobal ¼ 0 if the Mach
number is used or Iglobal ¼ 1 if the Lorentz factor is used. The second order convection parameter sb is defined;
Fig. 1.
Eqs. (16
is mini
sb ¼ sg
a ;0 6 g 6 1: ð18Þ
The second order parameter is constrained by ag < sb 6 1. In the above equations, a and g are user defined variables that
depend on the problem being solved. As will be seen in Section 4 the values for a and g vary depending on the smooth
or discontinuous nature of the test problem. The 1D non-relativistic shock tube example is used to demonstrate the FDV
parameters. Initially two regions of an ideal gas are separated by a wall. The two regions are at different pressures. When
the wall is removed, the high pressure gas quickly flows into the lower pressure region. With the correct initial conditions,
a shock forms in the simulation. Fig. 1 shows how the FDV parameter s1 varies as the Mach number in the flowfield varies.
The initial conditions for this problem have the removable wall at x ¼ 0 and the high pressure gas on the left side of the com-
putational domain. The FDV defined variable settings include a ¼ 0:25 and g ¼ 0:01 from Eqs. (16) and (18). The results show
that the numerical method (i.e. the FDV parameter) recognizes areas of physical flow changes. The Mach number is changing
rapidly in the shocked regions but is not changing in the non-shocked regions. The FDV parameter reflects this in its profile.

The FDV parameters add flexibility to the numerical formulation. When varied, the two parameters assist in the accuracy
and stability of the solution. This is demonstrated in Fig. 2 which shows the velocity shock for a 1D shock tube problem. The
computational problem is identical in each of the figure cases (i.e. time step, GMRES parameters, initial and boundary condi-
tions), only the variables used to calculate the FDV parameters are changed. In first case, a ¼ 0:25 and g ¼ 0:99, the large value
of g causes numerical instabilities to develop. In the second case, a ¼ 0:25 and g ¼ 0:01, the instabilities have been damped
with the lower g value. In third case, a ¼ 0:9 and g ¼ 0:01, the a value has been increased causing a less accurate and more dif-
fusive solution. Recall that when the FDV parameters sa and sb are near zero the method is explicit and when near one the meth-
od is implicit. In case three the solution is weighted to much towards an implicit method and the results are overly damped. The
other two cases are not weighted towards either extreme since the sa parameter can vary between 0.25 and 1 in both.

Other schemes such as the MUSCL-based total variation diminishing algorithm given by Tóth and Odstril [41] use limiters
to handle discontinuities and convection. Some limiters are designed to be diffusive in order to better handle discontinuities.
Other limiters are dispersive in nature to handle convection. The FDV method can handle these variations within a single
formulation. The FDV method has been modified from its original form with the modification of the variation parameters
sa and sb. The modification assists in maintaining the second order time accuracy of the method and adding stability to flows
with stronger shocks.

3.3. Finite element formulation

For our formulations we use a weighted residual method. The resulting residual form of the FDV equations is,
R ¼ ADUnþ1 þ En
i
@

@xi
ðDUnþ1Þ þ En

ij
@2

@xi@xj
ðDUnþ1Þ � Q n

i ¼ 0; ð19Þ
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Fig. 2. Velocity shock for the non-relativistic shocktube test problem. The only modifications between the three solutions are the variables used to calculate
the FDV parameters. The FDV variables a and g are defined in Eqs. (16) and (18). In the first plot a ¼ 0:25 and g ¼ 0:99, the second a ¼ 0:25 and g ¼ 0:01 and
the third a ¼ 0:9 and g ¼ 0:01. A wide difference is seen between the choices in both accuracy and stability.
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where A;En
i , and En

ij and Q n
i contain the information from the convective, diffusion, and source terms. For the cases used in

our verification examples these equations reduce to,
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A ¼ I� Dts5d� Dt2

2
s6d2

; ð20Þ

Ei ¼ Dts1ai þ
Dt2

2
ðs6dai þ s2daiÞ

� �n

; ð21Þ

Eij ¼ �s2
Dt2

2
ðaiajÞn; and ð22Þ

Q n ¼ � @

@xi
Dt þ Dt2

2
d

	 

Fn

i þ
Dt2

2
ai

	 

Sn

� �
þ Dt2

2
an

i
@

@xi

@Fn
i

@xi

	 
� �
þ Dt þ Dt2

2
d

	 

Sn: ð23Þ
The spacial indices are given by i and j, and n is the time index. The Jacobians for the convection terms are given by ai ¼ @Fi
@U

and for the source terms by d ¼ @S
@U. These equations represent the modified differential equations as a result of an application

of the FDV theory to Eq. (1). Note that, although Ei and Eij are functions of the spatial coordinates, they are considered con-
stants during the time integration steps, and are updated in the next time step. They are placed outside of the differential
operators allowing any existing numerical scheme such as finite difference, finite element, or finite volume to be used to
discretize Eq. (19). Up to this point in the equation formulation no numerical scheme has been specified. It is at this point
that a finite difference, finite volume or finite element scheme is chosen. For the reasons described in Section 1, which in-
cluded the freedom of non-structured grids and mathematically enforced boundary conditions, we choose a finite element
formulation.

The finite element formulation consists of constructing an inner product projecting the residual R of the differential equa-
tions, onto a subspace spanned by test functions Ua. If the test function is chosen to be the same as the trial function, Ub,
which separates the variables,
Uðxk; tÞ ¼ UbðxkÞUbðtÞ; ð24Þ
then such an approximation is known as the standard Galerkin finite element scheme given by
ðUa;RðU; Fi;Gi; SÞÞ ¼
Z

X
UaRðU; Fi;Gi; SÞdX ¼ 0: ð25Þ
The trial functions are dependent on the element formulation of the mesh, in this case isoparametric elements are used. Inte-
gration of Eq. (25) by parts leads to the global form of the assembled finite element equations, with the Neumann boundary
functions. In Eq. (25) and the resulting equations below,

R
X dX represents a volume integral and

R
C dC a surface integral.
ðAabgrsþBabrsÞDUnþ1
bs ¼Hn

arþNn
ar ; ð26Þ

Aab¼
Z

X
UaUb dX; ð27Þ

grs¼ drsþDts5drsþ
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2
s6drmdms; ð28Þ

Babrs¼
Z

X
� Dtðs1airsÞþ

Dt2

2
ððs2þ s6ÞdrtaitsÞ

	 

Ua;iUb

� �
dX

þ
Z

X

Dt2

2
s2ðairtajtsÞUa;iUb;j

� �
dXþ

Z
C

Dtðs1airsÞþ
Dt2

2
ððs2þ s6ÞdrtaitsÞU

�

a
U
�

b

� �
ni dC�

Z
C

Dt2

2
s2ðairtajtsÞU

�

a
U
�

b;j

� �
ni dC; ð29Þ

Hn
ar ¼

Z
X

DtFn
birþ

Dt2

2
ðdrsF

n
bisþairsS

n
bsÞUa;iUb

� �
dX�

Z
X

Dt2

2
ðairsF

n
bjsÞUa;iUb;j

� �
dXþ

Z
X

DtSn
brþ

D2

2
drsS

n
bs

 !
UaUb

" #
dX; ð30Þ

Nn
ar ¼

Z
C
� DtðFn

birÞþ
Dt2

2
ðdrsF

n
bisþairsS

n
bsÞ

� �
U
�

a
U
�

b

	 

nidCþ

Z
C

Dt2

2
airsF

n
bjs U
�

a
U
�

b;j

	 

ni dC: ð31Þ
The symbol * implies the Neumann boundary test and trial functions. The numerical integration is done using Gaussian
Quadrature. Note that if the FDV parameters are set at s1 ¼ 0 and s2 ¼ 1, the above equations reduce to the Taylor Galerkin
finite element scheme. The boundary integrals shown in Eqs. (29) and (31) are solved only when Neumann boundary con-
ditions are specified. Due to the finite element formulation, the Neumann boundary conditions are applied without the com-
mon constraints found in finite difference schemes (such as phantom nodes). Dirichlet boundary conditions are applied
directly to the boundary nodes. If a finite difference formulation is chosen for FDV, the equations reduce to commonly used
finite difference schemes when the FDV parameters are fixed at specified values. These schemes include Beam–Warming,
Euler explicit and implicit, Three point implicit, Trapezoidal implicit and Leap frog explicit. A discussion of these formula-
tions can be found in Yoon et al. [43].
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3.4. Generalized minimal residual application

The resulting system of equations (matrix inversion) is solved using the generalized minimal residual (GMRES) technique
[30,20]. This method is a Krylov subspace projection method that minimized the residual norm. The input parameters al-
lowed for GMRES include the maximum number of inner iterations, maximum number of outer iterations and the minimum
residual. Once the residual criteria is met, the iterations stop. Other allowable parameters include an initial guess and pre-
conditioners. For these test problems the initial guess and preconditioning options are not used. The solutions found using
GMRES converged quickly and large numbers of iterations were not necessary. The standard GMRES settings for the test
problems presented in this paper are a maximum of 10 inner iterations and 2 outer iterations with a minimum residual
of 1.0E�6. In order to decrease computation time when large matrix inversions are necessary, the equations are reformu-
lated in an element by element format [31]. In this form, smaller matrix inversions are performed on element groupings
and then recombined into their global format. The element matrix inversions are also performed using GMRES.

3.5. Timestep constraints

In explicit methods used to solve shock discontinuities, the timestep constraint requires that the fluid information can not
travel over more than one spacial element during a single timestep. Explicit methods are generally more accurate for shock
simulations. Since implicit methods include both the current and future timesteps in the solution, they are less restrictive.
Implicit methods are generally used when a more diffusive problem is being solved. In equation form the explicit constraint
leads to Dt < CFL Dx

Vmax
. To ensure this constraint, the velocity term used is the fluid velocity plus the sound speed Vmax ¼ uþ a.

This problem was studied originally by Courant et al. [11] with CFL being the time step constraint number. The timestep used
with each test problem in Section 4 is given with the problem and reported in the form Dt < CFL Dx

Vmax
for easier comparison

with other methods.

4. Test cases for FDV verification

Several standard test cases were evaluated to verify the FDV method. The first is a smooth wave with periodic boundary
conditions. The second is the scalar advection test problem. These first two problems are not governed by the hydrodynamic
equations in Section 2 but rather simple linear equations given with the problem statement. The next set of problems are
non-relativistic shock problems including the square wave, Noh shock and the hydrodynamic shock tube which are found
by solving Eq. (9). The special relativistic problems including the shock tube and a shock reflection problem are solutions
to Eqs. (6)–(8). The final problem is the converging/diverging nozzle which is solved using Eq. (10). As seen in these test
problems solved using FDV, the stronger shocks have a more accurate solution when the method is more explicit in nature.
The smooth problems are solved with a more implicit nature.

For each test problem, the L1 and L2 Norm errors were calculated as compared with the analytic solution. The L1 Norm
errors are found with
EL1 ¼
1
N

XN

i¼1

jSeðiÞ � ScðiÞj
jSeðiÞj

� �
; ð32Þ
where Se is the exact solution and Sc is the computed solution. The L2 Norm errors are found with
EL2 ¼
PN

i¼1ðSeðiÞ � ScðiÞÞ2PN
i¼1ðSeðiÞÞ2

 !1
2

; and ð33Þ
The maximum errors are found with,
EL1 ¼ max
ð1;...;NÞ

jSeðiÞ � ScðiÞj
jSeðiÞj

� �
: ð34Þ
When plotted against the mesh size on a loglog plot, the resulting slope of a best linear fit is related to the convergence rate
of the method.
logðjerrorjÞ � p logðxÞ þ logðcÞ: ð35Þ
Here p is the order of convergence and c the constant of proportionality.

4.1. Smooth wave test case

The first test case is a smooth sine wave with periodic boundary conditions proposed by Jiang and Shu [19]. In this test
case, the FDV method is used to solve the linear equation,
ut þ ux ¼ 0; �1 6 x 6 1: ð36Þ
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The initial condition is,
Fig. 3.
Dt ¼ 0:
wave u
uðx; 0Þ ¼ sinðpxÞ; ð37Þ
with periodic boundary conditions. For this problem the FDV defined variables are a ¼ 0:9 and g ¼ 0:5. The higher a and low-
er g indicates a more implicit nature of the equations. The FDV parameters are calculated using a normalized velocity for the
indicator in Eqs. (16) and (17). The time step is calculated using Dt ¼ 0:3 Dx

Vmax wave
. Fig. 3 shows the FDV results of this smooth

test problem with 50 nodes at t ¼ 1 s plotted over the exact wave. The lower two panels of the figure show the L1 and L2
Norm values for 100–1600 nodes plotted on a loglog scale. The slopes of the linear fit of these errors give an indication of
the numerical method’s convergence rate. The slope values for the L1 and L2 Norms are �0.90 and �0.98, respectively. These
results reflect the impact of the sb parameter to lower the method accuracy to first order in smooth cases.
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4.2. Scalar advection test case

The second test case is the scalar advection test case proposed by Jiang and Shu [19]. This test problem solves the same
linear equation as Eq. (36), but with a much more complicated set of initial conditions. The problem has periodic boundary
conditions and is stated as follows:
Fig. 4.
Dt ¼ 0:
ut þ ux ¼ 0; �1 6 x 6 1; ð38Þ
uðx;0Þ ¼ uoðxÞ; ð39Þ
uoðxÞ ¼ 1

6 ½Gðx; b; z� dÞ þ Gðx;b; zþ dÞ þ 4Gðx;b; zÞ�
when � 0:8 6 x 6 �0:6;

uoðxÞ ¼ 1
when � 0:4 6 x 6 �0:2;

uoðxÞ ¼ 1� j10ðx� 0:1Þj
when 0:0 6 x 6 0:2;

uoðxÞ ¼ 1
6 ½Fðx; k; a� dÞ þ Fðx; k; aþ dÞ þ 4Fðx; k; aÞ�
when 0:4 6 x 6 0:6;

uoðxÞ ¼ 0
otherwise;

ð40Þ

Gðx;b; zÞ ¼ e�bðx�zÞ2 ; ð41Þ

Fðx; k; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� k2ðx� aÞ2;0Þ;

q
ð42Þ
with a ¼ 0:5; z ¼ �0:7; d ¼ 0:005; k ¼ 10 and b ¼ log2
36d2. Results from this test case are shown in Fig. 4 where 200 nodes were

used. The timestep is given by Dt ¼ 0:1 Dx
Vmax wave

and the FDV defined variables were set as a ¼ 0:9 and g ¼ 0:5. This results
demonstrates the ability of the FDV method with complex flow features and boundary conditions. The geometric waves
move to the right and wrap around the left boundary when they reach the right boundary. A total time of t ¼ 2 s was used.
4.3. Shock test cases

The initial conditions of the shock cases are summarized in Table 1.
In the non-relativistic cases we ran comparison tests using the finite difference Total Variation Diminishing (TVD) meth-

od. The TVD code is based on the MUSCL algorithm by Tóth and Odstril [41]. Specifically, we are using Yee’s high order Lax-
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Friedrichs TVD scheme because it does not use a Riemann solver [42]. We chose this method because it can be applied to an
arbitrary system of conservation laws without a knowledge of the characteristic waves. For the comparison with FDV we
chose the minmod, monotonized central, superbee limiters. The minmod and superbee are the most and least diffusive of
the acceptable symmetric two-variable limiters, respectively. In our experience, the minmod limiter is more accurate for
shock capturing, although the shocks tend to be smeared over many grid points. The minmod gives unacceptable results
for the convection problem due to significant diffusion errors which grow over time. The superbee limiter is more accurate
for convection problems, but overshoots and undershoots are present at discontinuities in both the shock tube and square
wave convection problems. The monotonized central limiter provides a compromise and generally produced the most accu-
rate results.

For the relativistic problems, we compare some of our results with those found in the literature, but caution that such
comparisons should be used carefully. There are several possible variations for calculating errors between simulation results
and actual values and great detail is generally not included in each literature source. The FDV and TVD errors in this publi-
cation were calculated in identical ways. The same can not be confirmed for our comparisons with errors from other
publications.

The FDV parameters are noticeably different for the shock problems. The FDV defined variables are smaller than those for
the advection problems leading to a more explicit solution method.

4.3.1. Non-relativistic square wave
In this test problem, a square wave is defined with an initial velocity and location. As time increases ðt > 0Þ, the wave

travels and the square profile is maintained. Fig. 5 shows the FDV solution for a square wave that was initially at the left
side of the domain. The time step is defined as Dt ¼ 0:8Dx

Vmax
and the FDV defined variables are a ¼ 0:25 and g ¼ 0:01. The results

shown in Fig. 5 are at time=0.006 s and are plotted over the exact solution. The initial conditions were given in Table 1. The
L1 Norm and L2 Norm errors are shown for the 400 node case in Table 2. This table also shows the errors for the three TVD
methods. The convergence of the error values with relation to the size of the spacial steps (100–1600 nodes) are also shown
in Fig. 5.

4.3.2. Non-relativistic noh shock
The Noh shock problem was defined by Noh [25]. This problem simulates the shocks produced when two cold (ideal) gas-

ses, initially with high velocity, collide. Two shock waves are created in the collision moving in opposite directions. The in-
flowing gas between the shocks is heated and comes to rest while the shocks continue to propagate. This test is used to eval-
uate numerical methods for high speed flow and shock formation. The initial conditions for the problem are given in Table 1.
The initial velocity values are equal but in opposite directions around the midpoint (i.e. moving towards each other such that
they collide and reflect at t > 0). The simulation is symmetric about the center, and the results for the right side 400 node
case are shown in Fig. 6. The FDV defined variables for this case are a ¼ 0:25 and g ¼ 0:01. The time step is Dt ¼ 0:25Dx

Vmax
. Fig. 6

also shows the FDV errors as compared with the TVD errors (100–1600 nodes). Details of this information for the 400 node
case are also give in Table 3.

4.3.3. Non-relativistic shock tube
The shock tube is a common test problem for shock capturing methods. The shock tube is a one-dimensional time depen-

dent problem which initially has two static regions separated by a removable membrane. The initial pressure of the fluid on
one side is much higher than that of the fluid on the other. When the membrane is removed, the high pressure fluid quickly
expands into the region containing the low pressure fluid. If the initial pressure difference is great enough, a shock front
forms. The problem now has five regions. The fluid at each end of the shock tube is undisturbed and has the initial fluid
parameters. In the center, there is a rarefaction region, contact discontinuity and shock wave. These states are shown in
Table 1
Initial conditions of the test problems used to verify the FDV method. Note that SI units are used for the non-relativistic cases and natural speed of light units
are used for the relativistic cases.

Test problem Velocity (left) Velocity (right) Density (left) Density (right) Pressure (left) Pressure (right)

Square wave 100 100 (wave) 0.05 0.2 (wave) 1.5E3 1.5E3 (wave)
Non-rel shock tube
Mild 0 0 1.0 0.125 1.0 0.1
Moderate 0 0 1.0 0.02 1.0 1.0E�2
Noh shock 10,000 �10,000 1.0 1.0 7.63E�6 7.63E�6
Rel shock tube
Lorentz = 1.4 0 0 10.0 1.0 13.3 6.67E�7
Rel Noh shock
Lorentz = 2.3 0.9c �0.9c 1.0 1.0 7.63E�6 7.63E�6
Lorentz = 22.4 0.999c �0.999c 1.0 1.0 7.63E�6 7.63E�6
Lorentz = 224 0.99999c �0.99999c 1.0 1.0 7.63E�6 7.63E�6
Lorentz = 2236 0.9999999c �0.9999999c 1.0 1.0 7.63E�6 7.63E�6
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Fig. 5. Upper Plot: Non-relativistic square wave with the initial conditions found in Table 1, 400 nodes, specific heat ratio of 5/3 and a time step of Dt ¼ 0:8Dx
Vmax

.
The FDV defined variables are a ¼ 0:25 and g ¼ 0:01. The square wave was initially started on the left side of the computational domain. This result is for
t = 0.006 s. Lower Plot: The FDV convergence rate for the L1 Norm and L2 Norm density errors of the square wave shown against the TVD errors using
domain grids from 100 to 1600 nodes. The L1 Norm and L2 Norm linear best-fit slopes are �0.61 and �0.31.

Table 2
Square wave errors on density with 400 nodes.

Method EL1 EL2 EL1

FDV 3.56E�02 1.27E�01 1.48E+00
TVD monotonized central 1.58E�02 1.16E�01 1.87E+00
TVD Minmod 2.37E�02 1.20E�01 1.77E+00
TVD Superbee 1.26E�02 1.19E�01 2.06E+00
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Fig. 6. Upper Plot: Right half of the non-relativistic Noh shock with the initial conditions found in Table 1, with 400 nodes and a specific heat ratio of 5/3 and
a time step of Dt ¼ 0:25Dx

Vmax
. The FDV defined variables are a ¼ 0:25 and g ¼ 0:01. Initially two ideal gasses are flowing towards each other and interact at x = 0

resulting in two shocks traveling away from the center. The shock in the figure is traveling to the right and is shown at t ¼ 5E�5 s. Lower Plot: The FDV
convergence rate for the L1 Norm and L2 Norm density errors for the Noh shock shown with the TVD errors using domain grids from 100 to 1600 nodes. The
L1 Norm and L2 Norm linear best-fit slopes are �0.97 and �0.48.

Table 3
Non-relativistic Noh shock errors on density with 400 nodes.

Method EL1 EL2 EL1

FDV 1.79E�03 1.28E�02 6.13E�01
TVD monotonized central 6.39E�03 3.82E�02 1.80E+00
TVD Minmod 6.74E�03 3.85E�02 1.79E+00
TVD Superbee 7.13E�03 3.99E�02 1.82E+00
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Fig. 7. Region 4, the area between the shock wave and the contact discontinuity, has a different profile depending on the
input parameters. For our non-relativistic shocks, this region has a lower magnitude than the relativistic shocks.

Two non-relativistic shock tube cases were run using FDV. The initial conditions for both are given in Table 1. The first
shock tube is shown in Fig. 8 at time = 0.15 s. In this figure, density, velocity and pressure are all shown plotted with their
respected exact solutions. The FDV parameters are calculated using a ¼ 0:25 and g ¼ 0:01. The highest error in the fit shown
by the analytic solution is in the density region behind the shock. The errors for this solution are shown in Table 4.

The second and more difficult non-relativistic shock tube problem solved with FDV is the moderate shock tube using
boundary conditions given in Table 1. Fig. 9 shows the results of this case. The figure shows the density, velocity and pressure
at time = 0.15 s. The same timestep is used in this case, Dt ¼ 0:25Dx

Vmax
as the lower Mach number case. The errors for this problem

are shown in Table 5 and the FDV convergence rate in Fig. 9. In both shock tube cases, the FDV method accurately captures
the shock tube profile.
4.3.4. Relativistic shock tube
The special relativistic shock tube is an ideal evaluation technique for mildly ðvelocity < 0:9cÞ relativistic shocks since

there are known solutions allowing the computational method to be tested [7,40]. Additionally, these simulations test the
ability of a numerical technique over domains with widely varying flow velocities responsible for large spacial and temporal
scale differences. For the mildly relativistic shock, the initial conditions are given in natural units (where c = G = 1) in Table 1
[7,17]. The tube is one unit in length with the initial contact discontinuity located in the center. In the mildly relativistic
shock case, 400 nodes are used with a time step of Dt ¼ 0:2Dx

Vmax
.
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Fig. 8. Non-relativistic shock tube with the parameters found in Table 1 with 400 nodes, specific heat ratio of 1.4 and a time step of Dt ¼ 0:25Dx
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. The FDV
defined variables are a ¼ 0:25 and g ¼ 0:01. The time shown is 0.15 s.



Table 4
Non-relativistic mild shock tube density errors, for the 400 node case.

Method EL1 EL2 EL1

FDV 5.71E�03 1.14E�02 2.85E�01
TVD monotonized central 2.95E�03 1.19E�02 2.97E�01
TVD Minmod 4.14E�03 1.27E�02 2.66E�01
TVD Superbee 3.43E�03 1.22E�02 3.08E�01
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Fig. 9. Upper Plot: Moderate shock tube with the parameters found in Table 1 with 400 nodes, specific heat ratio of 1.4 and a time step of Dt ¼ 0:25Dx
Vmax

. The FDV
defined variables are a ¼ 0:25 and g ¼ 0:01. The time shown is 0.15 s. Lower Plot: Convergence rate of L1 Norm and L2 Norm density errors for the moderate
shock tube using domain grids from 100 to 1600 nodes. The L1 Norm and L2 Norm linear best-fit slopes are �0.62 and �0.41.
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Table 5
Non-relativistic moderate shock tube density errors for the 400 node case.

Method EL1 EL2 EL1

FDV 1.65E�02 1.05E�02 1.34+E00
TVD monotonized central 1.65E�02 1.05E�02 7.69E�01
TVD Minmod 1.67E�02 1.11E�02 1.32E+00
TVD Superbee 2.10E�02 1.30E�02 1.08E+00
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Fig. 10 shows the results of the mildly relativistic (Lorentz factor = 1.4) shock tube simulation. The figure contains the
velocity in speed of light coordinates, the normalized pressure and the normalized density. The analytic solution is plotted
beneath the FDV solution as shown by the solid line. We see a decrease in the sharpness of the fit around the shock as the
Lorentz factor increases.

4.3.5. Ultra-relativistic noh shock simulation
In order to test our technique in the ultra-relativistic regime, we conducted a series of planar shock reflection simulations

for which the analytic solution was found by Blandford and McKee [6]. This problem is similar to the non-relativistic Noh
shock problem. The initial conditions for these simulations (in natural units) are given in Table 1. Fig. 11 shows the profiles
for the resulting solution found from an initial velocity of 0.9c (Lorentz factor = 2.3). The simulation was run with 400 spacial
nodes (only the right half of the simulation is shown in Fig. 11) and a time step of Dt ¼ 0:5Dx

Vmax
.

Fig. 12 shows the physical profiles when various initial velocities (Lorentz factor = 2.3–2236) were used. For the purpose
of comparison, all the solutions are shown using the same time step. Visually, the shock is well captured with a small amount
of dispersion at the discontinuity. Considering the change in scale for the densities, the FDV method continues to accurately
capture the discontinuity as the Lorentz factor increases.

The L-1 Norm errors for the velocity = 0.9c (Lorentz factor = 2.3) simulation are shown in Table 6 along with a comparison
with other methods. This table includes results found by Anninos and Fragile [2] using a non-oscillatory central difference
(NOCD) scheme and [1] using an approximate Riemann solver. We find that the FDV method is more accurate at the bound-
ary x ¼ 0, where many numerical methods tend to be disrupted, but slightly more diffuse at the shock than the solutions
found with the above references. Fig. 11 shows the FDV convergence rate for this problem. Our results are very comparable
with those of other numerical methods for these ultra-relativistic simulations.

4.4. Converging/diverging nozzle

The converging/diverging nozzle was developed in the late 1800s by Gustaf de Laval and has become a classical analytic
fluids problem demonstrating subsonic and supersonic flow [21]. Fig. 13 shows the physical characteristics of the nozzle. The
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Fig. 10. FDV solution of a mildly relativistic (Lorentz factor = 1.4) shock tube with the initial conditions given in Table 1. The analytic solution is plotted over
the computational solution. Density and pressure are normalized for comparison with velocity. This simulation was run with 400 nodes, a time step of
Dt ¼ 0:2Dx

Vmax
and is displayed at t = 0.3 (natural speed of light units). The specific heat ratio is 5/3. The FDV defined variables are a ¼ 0:25 and g ¼ 0:01.
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Fig. 11. Upper Plot: Demonstration of strong shock capturing using the FDV method. The physical planar shock solution as described in the text is shown at
t = 2.0 (natural speed of light units). Initial opposing velocities of 0.9c (Lorentz factor = 2.3) were applied, and 200 spacial nodes (the right half) are shown.
Density and pressure are normalized by the shown factor for comparison with velocity. The time step used was Dt ¼ 0:5Dx
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The FDV defined variables are a ¼ 0:25 and g ¼ 0:01. The analytic solution is shown with solid lines. Lower Plot: FDV convergence rate for the L1 Norm and
L2 Norm density errors for the highly relativistic shock using domain grids from 100 to 1600 nodes. The L1 Norm and L2 Norm linear best-fit slopes are
�0.996 and �0.73.
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initial area decreases along the nozzle (converges) to a point of minimum area at the throat. The area then increases (di-
verges) to the exit. The inlet flow parameters are set on the left side of the nozzle. The flow through the nozzle is determined
by the back pressure that is controlled outside of the exit. As the back pressure is decreased, the flow velocity through the
nozzle increases. The converging region will always be subsonic as the flow chokes at the throat with a Mach number of 1.
The pressure in the throat will always be less than the inlet pressure. The flow in the diverging region can reach supersonic
speeds. If the diverging region is subsonic it acts as a diffuser and the pressure increases between the throat and exit. If the



Fig. 13. Converging/Diverging (de Laval) nozzle. The minimum area is the throat of the nozzle. Given initial flow conditions at the nozzle inlet, the flow
properties through the nozzle are determined by the exit pressure (or back pressure).

Table 6
L-1 Norm errors in the primitive variables for the planar wall shock simulation with 400 nodes and velocity = 0.9c.

Method Velocity Density Pressure

FDV 1.50E�03 1.65E�03 2.11E�03
NOCDa 2.69E�03 3.26E�02 1.10E�02
ARb 8.03E�03 9.66E�03 9.07E�03

a Anninos and Fragile [2].
b Aloy et al. [1].

Fig. 12. Resulting density from the ultra-relativistic (Lorentz factor = 2.3–2236) planar shock reflection simulation using the FDV method. Initially opposing
fluid velocities of the four magnitudes shown were applied with 200 spacial nodes (the right half) shown. The displayed time for these simulations is 2.0
(natural speed of light units) and the time step used was Dt ¼ 0:5Dx

Vmax
. The FDV defined variables are a ¼ 0:25 and g ¼ 0:01. The analytic solution is shown with

solid lines.
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diverging region is supersonic it acts as a nozzle and the pressure decreases between the throat and exit. The back pressure
determines the type of flow in the diverging region. If the back pressure is sufficiently low at the exit, a normal shock will
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Fig. 14. Upper Plot: Mach number results from the converging/diverging nozzle test after steady state has been reached (t = 0.014 s) with 200 nodes. The
back pressure is 0:004P0 and the nozzle chokes at the neck with a Mach number of 1. The time step used was Dt ¼ 0:5Dx

Vmax
and the specific heat ratio is 4/3. The

FDV defined variables are a ¼ 0:6 and g ¼ 0:1. The analytic solution is shown with solid line, but has a break at the throat since an analytic solution is not
possible at that location. Lower Plot: FDV convergence rate for the L1 Norm and L2 Norm velocity errors. The L1 Norm and L2 Norm linear best-fit slopes are -
1.05 and -0.83.



Table 7
de Laval density errors for the 400 node case.

Method EL1 EL2 EL1

FDV 3.83E�02 3.83E�03 8.51E�01
TVD monotonized central 7.32E�02 4.94E�02 8.05E�01
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develop in the region between the nozzle throat and exit plane. In such a situation the flow accelerates subsonically from the
inlet to the throat, transitions smoothly to supersonic flow, expands supersonically to some point downstream, then tran-
sitions abruptly to subsonic flow across the shock wave and decelerates subsonically to the exit. This is an interesting numer-
ical problem since there are regions of both incompressible and compressible flow.

The isentropic converging/diverging nozzle was solved numerically with FDV using the hydrodynamic equations from Eq.
(10) and compared with the known properties of the flow. The following relations are known where the inlet (or stagnation)
properties for area, pressure and density are given by A0; P0 and q0 and all are a function of distance including the Mach
number.
A
Athroat

¼ 1
M

2
cþ 1

	 

1þ c� 1

2
M2

	 
� � cþ1
2ðc�1Þ

; ð43Þ

P0

P
¼ 1þ c� 1

2
M2

� � c
c�1

; ð44Þ

q0

q
¼ 1þ c� 1

2
M2

� � 1
c�1

: ð45Þ
Eq. (43) results in two solutions for the Mach number at each position along the nozzle corresponding to the subsonic and
supersonic values. For a subsonic solution with a shock, the shock can be resolved using the following jump conditions where
‘‘1” is the shocked region and ‘‘2” is the unshocked region.
M2
2 ¼

M2
1 þ 2

c�1
2c
c�1 M2

1 � 1
; ð46Þ

P2 ¼ P1
1þ cM2

1

1þ cM2
2

 !
; ð47Þ

q2 ¼ q1
M2

1P1

M2
2P2

 !
: ð48Þ
For the test problem presented, the nozzle geometry is give by;
rðxÞ ¼
�2xþ 0:25 x 6 0:1

0:5x x > 0:1

�
ð49Þ
The initial conditions at the inlet are given as; Pressure ¼ 10 bar;density ¼ 17:7 kg=m3 and velocity ¼ 0 m=s. The exit pres-
sure was held constant for a variety of test runs starting at 10 bar and then lowered. The results presented have a back pres-
sure or 0:004P0 which is low enough for supersonic flow in the diverging region and for a shock to form. The FDV defined
variables are a ¼ 0:6 and g ¼ 0:1. The simulation was allowed to run until steady state conditions were met. The other exit
boundary conditions are calculated from the known solution given in the above equations.

Results from the FDV simulations are shown in Fig. 14. This 200 node simulation captured all the flow details in this
example problem including the pre-throat converging subsonic region, the post-throat diverging supersonic region and
the shock. This flow includes both incompressible and compressible regions as seen in the Mach number plot given in
Fig. 14. The TVD Monotonized Central scheme was also used for this simulation and the error results are given along with
the TVD results in the figure. A comparison of the errors is shown in Table 7 for the 400 node case comparing the FDV and
TVD methods.

5. Summary

We have presented a variety of test problems to demonstrate the capabilities of the finite element formulation of the
Flowfield Dependent Variation method. These problems included smooth flows, shocks, incompressible, compressible, sub-
sonic, supersonic and relativistic flows. The converging/diverging nozzle simulation was presented to demonstrate a solution
with both compressible and incompressible flow in the domain. These simulations show the ability of FDV to solve flowfields
with highly varying flow velocities indicating large variations in spatial and temporal scales. The ability to solve such flow-
fields is crucial for the numerical study of the complex interactions. Our errors across the flowfield are comparable with
those of finite difference methods which have been studied much more extensively in the literature.
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There are three primary motivators in our simulation domain for choosing a finite element formulation. First, finite ele-
ment schemes allow for unstructured grids while finite difference schemes do not (some finite volume schemes do allow
unstructured grids). Our goal to develop an MHD solver means that the complex geometry of reconnecting field lines will
benefit from an unstructured grid. Second, flux boundary conditions can be exactly applied without the use of phantom
nodes or other approximations. This is important at the edge of a domain where energy and density flux is prevalent. Third,
curvilinear coordinate systems can be implemented without dead zones due to the forward/backward nature of finite dif-
ference schemes. All the elements (node regions) are simultaneously solved in finite element schemes. In finite difference
schemes each node is solved in relation to the nodes surrounding it. This can create small flow field voids in curvilinear coor-
dinates. The major disadvantage for traditional finite element schemes is the computations due to large matrix inversion
calculations. In recent years, studies have provided alternatives for these large inversions. The calculations presented in this
paper have utilized the element-by-element formulation to decrease the size of the matrix inversions [31]. For the one-
dimensional calculations, the results were also found using a straight forward single large matrix inversion to ensure con-
sistent results. All of these motivators lead us to choose a finite element method.

The advantages of the FDV method include the following; First, physical flow properties dictate the solution type which
allows Different flow regions (in the same simulation) to have different solution formulations. Second, a wide range of flow
types (for example incompressible and compressible) can be solved in a single simulation. Third, the use of Jacobians con-
tribute to integration stability. The strengths of the finite element FDV method are necessary for the applications of interest,
magnetic reconnection in both stellar scale and laboratory scale plasmas. The FDV method has the potential to handle the
vast scale differences between the two problems while also maintaining an accurate solution for the complex physics.
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